Group	Doses			
	(g/kg/day)-	0 week	4 weeks	8 weeks
Control		244.5 ± 5.1	341.0 ± 8.0	449.3 ± 7.1
$CCl_4 + VEH$		245.3 ± 5.4	313.7 ± 6.7 [#]	$399.2\pm16.3^{\#}$
$CCl_4 + SIL$	0.2	244.3 ± 4.2	$312.6 \pm 7.2^{\#}$	420.5 ± 21.9
$CCl_4 + FMAC$	0.5	248.4 ± 4.7	$301.2 \pm 7.0^{\#}$	401.8 ± 10.39
$CCl_4 + FMAC$	1.0	247.8 ± 5.1	$308.5 \pm 9.2^{*}$	407.2 ± 10.94

Table. 2-1. Effect of FMAC on 0, 4, 8 weeks body weight of CCl₄ chronic

treated rats.

CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. SIL 0.2g/kg/day or FMAC (0.5 or 1.0 g/kg/day) was administered orally from week 4 to the end of the experiment.Values are mean \pm S.E. (n = 12) P[#]<0.05, P^{##}<0.01 compared with the control group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Group Doses		SOD	Catalase	GSH-Px	
	(g/kg/day)	(U/mg protein)	(U/mg protein)	(U/mg protein)	
Control		30.28 ± 1.5	54.43 ± 1.8	1264.5 ± 45.9	
$CCl_4 + VEH$		14.46 ± 1.2 ^{###}	38.71 ± 2.6 ^{###}	984.6 ± 17.6 ^{##}	
$CCl_4 + SIL$	0.2	15.70 ± 2.7	42.68 ± 1.6	1019.2 ± 25.6	
$CCl_4 + FMA$	C 0.5	16.42 ± 1.2	47.37 ± 4.0	997.4 ± 33.7	
$CCl_4 + FMA$	C 1.0	15.57 ± 1.0	47.83 ± 3.0	1072.0 ± 87.2	

Table. 2-2. Effect of FMAC on liver SOD, Catalase, GSH-Px activity. in CCl₄ chronic treated rats.

CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. SIL 0.2g/kg/day or FMAC (0.5 or 1.0 g/kg/day) was administered orally from week 4 to the end of the experiment.Values are mean \pm S.E (n = 12). P^{##}<0.01, P^{###}<0.001 compared with the control group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Gene Name	ID	Α	В	B / A
		CCl ₄ /	CCl ₄ /	
		control	FMAC	ratio
		ratio	ratio	
Signal transducation				
Ctslcathepsin L	H3028F03	5.614	2.087	0.37
Gnb2l1guanine nucleotide binding pro	H3083H02	6.306	2.713	0.43
Gnb2l1guanine nucleotide binding pro	H3027D10	5.191	2.34	0.45
Abl1v-abl Abelson murine leukemia on	H3019F05	4.602	2.145	0.47
RanRAN, member RAS oncogene family	H3154A03	4.471	2.281	0.51
Gnai2guanine nucleotide binding prot	H3106F07	4.273	2.173	0.51
Matrix				
Col3a1procollagen, type III, alpha 1	H3124H10	9.813	2.196	0.22
Col1a1procollagen, type I, alpha 1	H3119H03	7.855	2.272	0.29
Acp5acid phosphatase 5, tartrate res	H3007G06	6.35	2.135	0.34
Calrcalreticulin	H3021G11	6.051	2.039	0.34
Ero11-pendinERO1-like	H3125G05	6.432	2.222	0.35
Lbplipopolysaccharide binding protein	H3086G08	6.031	2.088	0.35
Krt2-8keratin complex 2, basic, gene	H3014H12	5.035	1.75	0.35
Actxmelanoma X-actin	H3018D09	6.137	2.299	0.37
Lypla1lysophospholipase 1	J1043F12	4.329	1.733	0.40
Actgactin, gamma, cytoplasmic	H3114E08	6.326	2.541	0.40
Hbb-b1hemoglobin, beta adult major c	H3123E05	4.705	1.944	0.41
Syn1synapsin I	H3028D10	5.042	2.187	0.43
Got2glutamate oxaloacetate transaminase	H3157D01	4.424	1.955	0.44
Tuba2tubulin alpha 2	H3024D08	4.334	1.982	0.46
Apoa1apolipoprotein A-I	H3043A10	5.179	2.383	0.46
P4hbprolyl 4-hydroxylase, beta polyp	H3125C05	5.161	2.353	0.46
Cbx5chromobox homolog 5 (Drosophila	J0001F06	4.342	2.187	0.50

Table. 2-3. List of liver genes expression in CCl₄ chronic treated rats.

Table. 2-3. (continued)

Protein				
H19H19 fetal liver mRNA	H3133G06	11.203	2.004	0.18
Rps6ribosomal protein S6	L0264E06	6.162	2.052	0.33
Rpl3ribosomal protein L3	H3011F03	6.295	2.213	0.35
Rpl26ribosomal protein L26	H3126H12	5.79	2.044	0.35
Rps24ribosomal protein S24	H3145D11	5.793	2.046	0.35
Rpl5ribosomal protein L5	H3028D03	5.123	1.869	0.36
Rps19ribosomal protein S19	H3146B07	6.862	2.459	0.36
Rpl37aribosomal protein L37a	H3134G11	5.925	2.307	0.39
Rpl41ribosomal protein L41	H3157D06	5.906	2.302	0.39
Rpl7ribosomal protein L7	H3147G04	5.403	2.084	0.39
Rplp1ribosomal protein, large, P1	H3140H04	6.347	2.547	0.40
Rps7ribosomal protein S7	H3122C10	6.042	2.503	0.41
Rpl13aribosomal protein L13a	H3136G06	5.434	2.239	0.41
Plfproliferin	C0118D06	4.548	1.866	0.41
Arbpacidic ribosomal phosphoprotein	H3118D03	6.081	2.547	0.42
Rps4xribosomal protein S4, X-linked	H3120D10	6.079	2.558	0.42
Rpl3ribosomal protein L3	H3112F08	5.575	2.367	0.42
Rps12ribosomal protein S12	H3112B02	6.61	2.751	0.42
Rps17ribosomal protein S17	H3118G04	6.273	2.632	0.42
Rps5ribosomal protein S5	H3112G01	6.223	2.656	0.43
Rps8ribosomal protein S8	H3119A09	5.263	2.277	0.43
Rps16ribosomal protein S16	H3115B08	5.712	2.532	0.44
Rps28ribosomal protein S28	H3099D03	5.345	2.376	0.44
Rps15ribosomal protein S15	H3150B01	6.028	2.75	0.46
Rps3ribosomal protein S3	H3124H06	5.669	2.652	0.47
Rpl9ribosomal protein L9	H3112A09	4.469	2.151	0.48
Trttranslationally regulated transcr	H3113H02	4.443	2.12	0.48
Rps16ribosomal protein S16	H3112H10	5.711	2.764	0.48
Rpl36ribosomal protein L36	H3117D06	4.94	2.351	0.48
Pabpc1poly A binding protein, cytopl	H3107F01	3.418	1.639	0.48
Rpl29ribosomal protein L29	H3004G11	3.839	1.898	0.49

Table. 2-3. (continued)				
Rpl23ribosomal protein L23	H3013F03	4.822	2.435	0.50
Ubcubiquitin C	H3124H08	4.059	2.015	0.50

Fig. 2-1.

Effect of the FMAC on CCl₄ chronic treated rats liver weight. CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Data are Values are mean \pm S.E. (n = 12) *P<0.05 compared with the CCl₄ + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-2.

Effect of the FMAC on spleen weight of CCl_4 chronic treated rats. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ###P<0.001 compared with the control group. *P<0.05 compared with the CCl_4 + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-3.

Effect of the FMAC on GPT activities of CCl_4 chronic treated rats. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ###P<0.001 compared with the control group. *P<0.05 compared with the CCl_4 + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-4.

Effect of the FMAC on GOT activities of CCl₄ chronic treated rats. CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ###P<0.001 compared with the control group.*P<0.05, **P<0.01 compared with the CCl₄+ VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-5.

Effect of the FMAC on serum albumin (ALB) concentration of CCl_4 chronic treated rats. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ^{###}P<0.001 compared with the control group. *P<0.05 compared with the CCl_4 + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-6.

Effect of the FMAC on serum A/G ratio of CCl₄ chronic treated rats. CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ^{###}P<0.001 compared with the control group.^{*}P<0.05 compared with the CCl₄ + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-7.

Effect of the FMAC on prothrombin time of CCl_4 chronic treated rats. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ###P<0.001 compared with the control group.*P<0.05 compared with the CCl_4 + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-8.

Effect of the FMAC on liver protein contents of CCl_4 chronic treated rats. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ^{###}P<0.001 compared with the control group. ^{*}P<0.05,. ^{**}P<0.01 compared with the CCl₄ + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-9.

Effect of the FMAC on liver lipid peroxidation (LPO) of CCl₄ chronic treated rats. CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). ^{###}P<0.001 compared with the control group. ^{**}P< 0.01compared with the CCl₄ + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-10.

Effect of the FMAC on liver hydroxyproline contents of CCl₄ chronic treated rats. CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n=12). ^{###}P<0.001 compared with the control group. ^{**}P<0.01 compared with the CCl₄ + VEH group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-11.

Effect of the FMAC on liver glutathione contents of CCl₄ chronic treated rats. CCl₄ was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC (0.5 or 1.0 g/kg/day) or Silymarin (0.2g/kg) was administered orally from week 4 to the end of the experiment. Values are mean \pm S.E. (n = 12). *P<0.05 compared with the CCl₄ group. VEH: vehicle; SIL: Silymarin; FMAC: filtrate of fermented mycelia of *Antrodia camphorata*

Fig. 2-12.

The photomicrographs of liver section taken from rats and stained with hematoxylin-eosin. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC or Silymarin was administered orally from week 4 to the end of the experiment. (A) Normal control (B) CCl_4 , Note that inflammatory cell infiltration, massive fatty changes and centribular necrosis was observed. (C) CCl_4 + Silymarin (D) CCl_4 + FMAC 1.0 g/kg/day

Fig. 2-13.

The photomicrographs of liver section taken from rats and stained with Masson's trichrome. CCl_4 was administered by gavaging twice a week at a dose of 0.5 ml/rat for 8 weeks. FMAC or Silymarin was administered orally from week 4 to the end of the experiment. (A) Normal control (B) CCl_4 . Note that displaying bundles of collagen surrounding the lobules, with hemorrhage and necrosis was observed. (C) CCl_4 + Silymarin (D) CCl_4 + FMAC 1.0 g/kg/day